encouraging vibrant communities through sensible growth

Making School Routes Safe Communitywide

www.idahosmartgrowth.org
Workshop Summary

Presentations
- Twenty three different presentations

Location
- Fourteen sites around the state

Communities represented
- Thirty – six different cities, three counties, and two regional representatives
Over 200 individuals,

1. Professional planners (city, MPO, transportation/transit agency, parks, school district, private)
   - 2. Engineers (city, transportation/transit agency, private)
   - 3. Elected officials (mayors, city council members, school board members)
   - 4. Professional staff (teachers, university faculty, administrators [city/school], facility managers, parks & rec, public health, historic preservation, smart growth)
   - 5. Citizen advocates (pedestrian/bicycle organizations, safe routes advocates, historic preservation, neighborhood association)
Federal Transportation Law

SAFETEA-LU

Sections(s): 1101(a) (17), 1404

- A Program to Enable Children to Walk and Bike to School Safely
Federal Funding in Idaho

Minimum Guarantee - $1 million

- Based on a ratio of student population K-8 to total state population

Idaho receives $1 million per year
The Problem?

Fewer children walk or bike to school

- Kids walking to school dropped 23% between 1969 and 2001

Source: CDC 2005 and National Household travel survey
The Causes

Unsafe Conditions

- Pedestrian and Bicycle Infrastructure is inadequate/incomplete
Land use

- Patterns have become spread out and disconnected

The Causes

School Sites have moved and grown larger

- Schools sited on overly large sites far from the neighborhoods and students they serve

- Site boundary
- ½ mile walking radius
- 1 mile walking radius
The Consequences

Congestion at schools is worsening

- up to 25% of peak hour trips are created by parents driving kids to school

= increases of asthma and other chronic respiratory diseases.
The Consequences

Health impacts of low activity

- Obesity is reaching epidemic proportions
  - increased Type II Diabetes
Obesity in Idaho is reaching epidemic proportions

The Consequences

Health impacts of low activity

- Obesity in Idaho is reaching epidemic proportions

Source: Idaho BRFSS, Bureau of Vital Records and Health Statistics U.S. Source: BRFSS (median), Centers for Disease Control and Prevention
The Consequences

Health impacts of low activity

Increased Diabetes in Idaho, Diabetes has doubled in 13 years from 4% in 1997 to 8% in 2009

Source: Idaho BRFSS, Bureau of Vital Records and Health Statistics U.S. Source: BRFSS (median), Centers for Disease Control and Prevention
The Consequences

Children lose independence and mobility

- Kids must rely on adults to drive them

Everything is a Drive Away

- Home
- School
- Shops
- Recreation
- Library
Solutions

1. **Smart Growth** — Convenient community patterns

2. **Complete Streets** with bicycle & pedestrian infrastructure.

3. **School Site Planning** — within walking distance, meets communitywide needs.

*Create Safe Routes to School!*
Smart Growth = Convenient Mixed-use Communities
What is Smart Growth

Five D’s

- Density & Distance
  - Compact
- Diversity
  - Mixed Use
- Design
  - Streets, Setbacks, Pattern
- Destinations
  - Walk distance to needs
Density Affects Distance

Density

- Changes at lower end make a big difference in the # of miles traveled per year

Biggest gains at lowest levels

The Four Ds

Diversity

- Mix of housing types
The Four Ds

Diversity

- Mix of Uses
Design of street network

Destination Accessibility through Design

- Diversity makes use of good design
Design (again)

Compare Neighborhoods

- More connected – more within one mile
### Sacramento Scenarios - Auto Use

#### % Change from Existing

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Total Vehicle Trips/Day</th>
<th>Total Vehicle Miles/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Trends</td>
<td>+140%</td>
<td>+120%</td>
</tr>
<tr>
<td>Density Only</td>
<td>+114%</td>
<td>+89%</td>
</tr>
<tr>
<td>Dense &amp; Smart Growth</td>
<td>+91%</td>
<td>+62%</td>
</tr>
<tr>
<td>Land Use Balance</td>
<td>+111%</td>
<td>+74%</td>
</tr>
</tbody>
</table>

When population doubles, there will be a big increase in auto use under any scenario.

But 4D model shows smart growth policies could reduce the growth significantly.

*Source: 4D study Sacramento, Fehr and Peers 2008*
## Sacramento Scenarios - Walk/Bike

...and other non-motorized trips.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Sac County</th>
<th>Total Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>6.6%</td>
<td>6.4%</td>
</tr>
<tr>
<td>Current Trends</td>
<td>5.1%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Density Only</td>
<td>11.6%</td>
<td>8.9%</td>
</tr>
<tr>
<td>Dense &amp; Smart Growth</td>
<td>23.5%</td>
<td>18.0%</td>
</tr>
<tr>
<td>Land Use Balance</td>
<td>13.9%</td>
<td>10.6%</td>
</tr>
</tbody>
</table>

The 4D’s have major impacts on the percentage use of walking and biking that would not be detectable using a conventional model.

Source: 4D study Sacramento, Fehr and Peers 2008
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Auto</th>
<th>Transit</th>
<th>Non-Motorized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>92.2%</td>
<td>1.1%</td>
<td>6.6%</td>
</tr>
<tr>
<td>Current Trends</td>
<td>93.8%</td>
<td>1.1%</td>
<td>5.1%</td>
</tr>
<tr>
<td>Density Only</td>
<td>84.9%</td>
<td>2.4%</td>
<td>12.5%</td>
</tr>
<tr>
<td>Dense &amp; Smart Growth</td>
<td>71.1%</td>
<td>5.4%</td>
<td>23.5%</td>
</tr>
<tr>
<td>Land Use Balance</td>
<td>83.0%</td>
<td>3.0%</td>
<td>13.9%</td>
</tr>
</tbody>
</table>

4D model does not forecast the demise of the auto mode, even under the most aggressive scenario.

But it does suggest that a more balanced mode split is achievable in Sacramento.

Source: 4D study Sacramento, Fehr and Peers 2008
Complete the Streets For All Users with walking and biking facilities
How a Complete Street looks

- Adequate Sidewalk widths
- Pedestrian Protection such as street trees or on-street parking
- Bike Lanes
- Appropriate Lane Widths to slow traffic
Who are “All Users”? 

Everyone who travels in your community.

- Pedestrians of all ages
- Disabled travelers
- Bicyclists
- Transit riders
- Drivers
- Freight haulers

Can you meet all of their needs?
What does your community want?

- Don’t let traffic modeling determine the outcome.
- Decide what you want first. Determine how traffic fits into that vision.
Integrate with Land Use

Many different kinds of complete streets.

- Make “Context Sensitive by serving adjacent land use.
There will be Exceptions

Exceptions:

- Require a high level approval (elected officials)
- Have clear criteria and require findings about how the exception meets the criteria

Ask

1. How will you meet all users needs?
2. If not on this roadway where?

Establish measurements for all users

- Determine how you will measure pedestrian and bicycle
- Look for adopted LOS standards for pedestrians and bicyclists
- Use GIS technology to pinpoint deficiencies

Find examples and plans at:
http://www.bicyclinginfo.org/develop/sample-plans.cfm
Implementation - measurable outcomes.

- Requires that you identify who will do what and by when.
- Develop a process, follow through is a must.
School Site Planning
School Site Planning

- within walking and biking distance
- meets community wide needs
- joint collaborative process
School Siting Obstacles

Barriers to establishing walkable schools

- School size drives Administrative costs
School Siting Obstacles

Barriers to establishing walkable schools

- Maintenance/Renovation costs
School Siting Obstacles

Barriers to establishing walkable schools

- Land costs
- Busing costs separate
School Siting Obstacles

Barriers to establishing walkable schools

- Educational program needs
- Athletic field needs/wants
- High costs
Implement Collaborative Community Planning

Develop MOU or other commitment to plan collaboratively

- Include land use agency, school district, transportation agencies at a minimum
- Determine decision-recommendation process
- Work for consensus
Implement Collaborative Community Planning

Utilize workshop process

- Develop **base line information** (costs, needs, walkability) on all sites to be considered
- Invite **all stakeholders**, make input meaningful
- Include **other facilities** if pertinent (i.e. parks, fields, community centers)

Use process to **balance competing needs**.
Policy Survey

What

- 8 questions about pedestrian, bicycle, school siting and land use policies

Who

- 82 respondents, from 23 communities.
- Between 32 and 77 of the participants answered each question
### Safe Routes Policy Survey Results

<table>
<thead>
<tr>
<th>Mixed Use Policies</th>
<th>MU in Land Use Code</th>
<th>Sidewalks</th>
<th>Specific sidewalk requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>69%</td>
<td>74%</td>
<td>49%</td>
</tr>
<tr>
<td>No</td>
<td>9%</td>
<td>17%</td>
<td>32%</td>
</tr>
<tr>
<td>Don't Know</td>
<td>22%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>New Only 6</td>
<td>New Only 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Don't Know</td>
<td>Don't Know 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bike lanes and paths</th>
<th>Require school connections</th>
<th>Future plans</th>
<th>Plans funded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-Good</td>
<td>14%</td>
<td>30%</td>
<td>72%</td>
</tr>
<tr>
<td>Y-Adequate</td>
<td>30%</td>
<td>13%</td>
<td>11%</td>
</tr>
<tr>
<td>Y-Inadequate</td>
<td>32%</td>
<td>43%</td>
<td>10%</td>
</tr>
<tr>
<td>Limited</td>
<td>8%</td>
<td>14%</td>
<td>7%</td>
</tr>
<tr>
<td>None</td>
<td>15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don't Know</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connectivity of transport system</th>
<th>Crossings</th>
<th>School siting/design Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>20%</td>
<td>16%</td>
</tr>
<tr>
<td>Partially</td>
<td>7%</td>
<td>23%</td>
</tr>
<tr>
<td>No</td>
<td>43%</td>
<td>23%</td>
</tr>
<tr>
<td>Don't Know</td>
<td>29%</td>
<td>16%</td>
</tr>
<tr>
<td>Don't Know</td>
<td>21%</td>
<td></td>
</tr>
</tbody>
</table>
The problems we have created cannot be solved with the same thinking that created them....”

Elaine Clegg
elaine@idahosmartgrowth.org
School Siting Polices that can make a difference

1. School Size

- Eliminate minimum acreage standards
- Lower or eliminate minimum school enrollment
- Use community based decision making process
- Share administrative costs between buildings
2. Encourage School Renovation

- Eliminate “% rules” that discourage renovation
- Prioritize repair/renovation of existing buildings over new construction
- Develop process to adapt current sites to new needs

http://www.preservationnation.org/issues/historic-schools/
School Siting Policies that can make a difference

3. Conduct a Full Cost Accounting

- Compare cost of reuse and reconstruction to new construction
- Complete comparative analysis of possible sites
- Study all costs in comparison, include extension of infrastructure (roads, sidewalks, sewer), busing costs
School Siting Policies that can make a difference

Minimize transportation/health costs

- Determine direct life cycle transportation costs/benefits
- Assess health impacts of site
- Prepare walkability/bikability analysis for new sites.
- Evaluate indirect costs such as vehicle miles traveled, air quality impacts.
School Siting Policies that can make a difference

Plan to Share Facilities

- Authorize sharing of facilities with cities & non-profits
- Develop policies for liability, cost sharing, security, insurance, etc.
- Include sharing ideas in long range plans
- Examine sharing with every renovation or construction

http://www.phlpnet.org