Josiah Quincy & Boston Arts academy
Mitigation:

Two site strategies:

1. Use building to shield open space from highway
2. Create indoor atrium space with clean air
Figure 52: The “green lung” concept is shown with an atrium full of vegetation and trees. The building is shown incorporating plants and natural light throughout. A pedestrian bridge is shown connecting the school building to the rest of Chinatown.
Josiah Quincy Upper School & Boston Arts Academy Chinatown, Boston

Building a Green Lung
• Atrium divides two schools
• Provides “outdoor” common space

Tactics Utilized:
• Air Inlet locations
• Filtration
• Tight envelop
• Vegetation in atrium
• Decking over highway

Ventilation and Filtration with Atrium

Conditioned Atrium Tight Exterior Envelope

Filtered Air Intakes

Interior open space inspired by Ford Foundation Building

Drawings by Giamportone Design
Chinatown Neighborhood Mitigation Strategies

- Increase highway decking
- Expand vent system to reduce end-of-tunnel plume

Figure 51: Natural and powered ventilation and filtering could be integrated into buildings as well as stand-alone ventilation shafts.

Drawings by Giampontone Design
Josiah Quincy Upper School & Boston Arts Academy Chinatown, Boston
Chinatown Neighborhood Decking diagram
Josiah Quincy Upper School & Boston Arts Academy Chinatown, Boston
Josiah Quincy Upper School & Boston Arts Academy Chinatown, Boston
Josiah Quincy Upper School & Boston Arts Academy Chinatown, Boston
Josiah Quincy Upper School & Boston Arts Academy Chinatown, Boston

Program Distribution
For Air Quality
Josiah Quincy Upper School & Boston Arts Academy Chinatown, Boston

HVAC Design
Supply Air Intake Location

• Centralized Fresh Air Intake at rooftop level

• MERV 14 filter at RTU
HVAC Classroom System Options

<table>
<thead>
<tr>
<th>HVAC System 1</th>
<th>HVAC System 2</th>
<th>HVAC System 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rooftop Air Handling Unit</td>
<td>Room air</td>
<td>VAV Box</td>
</tr>
<tr>
<td>Supply air</td>
<td>Return</td>
<td>Perimeter Radiation</td>
</tr>
<tr>
<td>Room air</td>
<td>Conditioned recirc. air</td>
<td></td>
</tr>
<tr>
<td>Conditioned mixed air</td>
<td>Supply air (constant volume)</td>
<td></td>
</tr>
<tr>
<td>Perimeter Radiation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparisons

<table>
<thead>
<tr>
<th>Comparisons</th>
<th>Active Chilled Beam (induction unit)</th>
<th>Displacement w/ Passive Chilled Beams</th>
<th>Displacement, Full AC w/ VAV Boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duct/Chase & RTU Size</td>
<td>100%</td>
<td>80-90%</td>
<td>200%</td>
</tr>
<tr>
<td>Air Quality</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>First Cost ($)</td>
<td>+</td>
<td>base</td>
<td>-</td>
</tr>
<tr>
<td>Operational Cost ($)</td>
<td>-</td>
<td>base</td>
<td>++</td>
</tr>
<tr>
<td>Energy Use</td>
<td>-</td>
<td>base</td>
<td>++</td>
</tr>
<tr>
<td>Life Cycle Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks</td>
<td>Induction unit utilize only primary air volume to heat and cool spaces, reducing the RTU sizing and ductwork sizing.</td>
<td>Temp. control by chilled or hot water via radiant panels & radiators. Displacement system has some cooling capacity but not enough for full cooling.</td>
<td>Full AC displacement ventilation stratifies the space load by adjusting the variable air volume box.</td>
</tr>
</tbody>
</table>

analysis in progress...
Question 5: What are the differences across the scenarios for the 39% WWR set?

Note: This comparison set looks more closely at the scenario options for the 39% WWR.

Bottom Line: The dimming controls + interior screen controls (column 4) appear beneficial to incorporate because they are providing a 3% increase in savings in total energy and a 7% increase in savings in peak demand reduction. Taking a closer look at where the savings are coming from, there is an additional 10% savings in cooling and 15% savings in lighting.